
IDEA: Planning at the Core of Autonomous Reactive Agents

Nicola Muscettola Gregory A. Dorais Chuck Fry Richard Levinson
NASA QSS

NASA Ames Research Center

Moffett Field, California 94035

,, mus @email.arc.nasa.gov

Abstract

Several successful autonomous systems are separated into
technologically diverse functional layers operating at
different levels of abstraction. This diversity makes them
difficult to implement and validate. In this paper, we present
IDEA (Intelligent Distributed Execution Architecture) a
unified planning and execution framework. In IDEA a
layered system can be implemented as separate agents, one
per layer, each representing its interactions with the world
in a model• At all level, the model representation primitives
and their semantics is the saiiae. Moreover, each agent retii_S
on a single model, plan database, plan runner and on a
variety of planners, both reactive and deliberative. The
framework allows the specification of agents that operate
within a guaranteed reaction time and supports flexiMe
specification of reactive vs. deliberative agent behavior.
Within the IDEA framework we are working to fully
duplicate the functionalities of the DS1 Remote Agent and
extend it to domains of higher complexity than autonomous

spacecraft control.

Introduction

Several successful autonomous systems are separated into

technologically diverse functional layers operating at
different levels of abstraction (Bonasso et al. 1997) (Cuttle
and Tate 1991) (Wilkins et al. 1994). However, there are

some significant drawbacks to this approach. Developing
layered systems is complex. For example, it is unreasonable
to expect that domain experts (e.g., system and mission

engineers in a spacecraft domain) will directly encode their
knowledge in a form usable by the different agent layers.
Instead, this encoding becomes the responsibility of_

specialists familiar with each agent layer, which'increases _-'_
development cost and reduces the applicability of the
autonomous software. _Another problem is the frequent
need to encode the same requirement in different forms in
the different layers. _h-e:' difficulty of tracking encoding

discrepancies can decrease the reliability of the
autonomous software. In this paper, we describe IDEA

(Intelligent Distributed Execution Architecture) an
approach to planning and execution that provides a unified
representational and computational framework for an
autonomous agent. IDEA provides a well-founded virtual
machine that integrates planning as the reasoning module at
the core of the execution engine. The virtual machine is

composed by four main components whose interplay

provides the basis for the agent's autonomous behavior: the
domain model, the plan database, the plan runner, and the

Copyright © 2002, AmericanAssociation for Artificial Intelligence
(www.aaai.org). All rights reserved.

Christian Plaunt

NASA

reactive planner. Deliberative planning is not a core

requirement for the virtual machine but, through modeling
and problem solving on the plan database, IDEA provides
the means to program arbitrary combinations of reactive
and deliberative problem solving. IDEA also defines a

simple protocol for communication among several separate
IDEA agents, i.e., agents implemented using the IDEA
virtual machine. We believe that this representational and

problem-solving approach can be applied at all levels of the
architecture of a complex agent, such as Remote Agent

(Bernard et al. 1998). We have recently taken a first
significant step toward demonstrating this by re-

. implementing the high-level control layer of the Remote
Agent. This includes closed-loop reactive planning after an
unrecoverable hardware fault to put the spacecraft in

standby while allowing the deliberative planner to
regeherate the mission plan to adapt to the degraded

spacecraft capabilities.
By defining a virtual machine IDEA aims at the agent's
"assembly level". We believe that using IDEA is not

incompatible with current high-level execution languages
(Gat 1996) (Simmons and Apfelbaum 1998) since
progr'ams written in these languages could be compiled into
IDEA's "assembler" and executed by an IDEA virtual
machine. Moreover, IDEA aims at defining the required

functionalities and interfaces of the modules constituting
the Virtual machine. As such, IDEA encourages the use of
different technologies and implementations for the plan
database and the reactive and deliberative planners (Kim,

Williams and Abramson 2001).
In the rest of the paper we briefly describe the Remote

Agent. architecture as an example of the state of the art in
multi-layered agents. We then describe how idea differs
from current multi-layered architectures. We sketch the
IDEA virtual machine and point out some of its

implications, mainly with respect to the reactivity and
interaction between reactive and deliberative decision-

ma-ldng.

Layered Agent Architectures: Remote Agent

The Remote Agent (RA) was developed at the NASA
Ames Research Center and at the Jet Propulsion

L'aboratory. RA is an autonomous control system capable
• of closed-loop commanding of spacecraft and other

complex systems. RA was demonstrated by running on-
board the Deep Space 1 (DS1) spacecraft and controlling

its operations for a total of two days in May 1999 (Bernard
et al. 1998) (Nayak et al. 1999). Unlike traditional

spacecraft command sequencers, RA was designed to be

goal-achievingandrobust.Whilea commandsequencer
simplyissueslow-levelcommandsatfixedtimes,a goal-
achievingsystemreceivesaspecifiedstatetobemaintained
fora specifiedperiodof timeandfromthisit determines
the relevantcommandsand whento issuethem.A
commandsequenceris brittle whenconfrontedwith
commandfailuresandcannotfurtherproceed,butRAcan
modifypre-plarmedcommandsin orderto overcome
obstaclesthatwouldnormallypreventtheachievementofa
goal.Operationalconstraintswereexplicitlyencodedinto
RAmodels.RAusedthesemodelsto avoidviolatingthe
constraintsregardlessofthecommandedgoals.
TheRAarchitectureintegratesthreelayersoffu_actionality:
a constraint-basedplanner/scheduler(PS)(Jonssonet al.
2000)areactiveexecutive(EXEC)(Pelletal.1999),anda
Model Identificationand Recoverysystem(MIR).
consistingofamodel-basedtruthmaintenancesystemwith
diagnosisandrecoverymodule(WilliamsandNayak1996)
(Figure1).Eachlayerusesadifferentmodelinglanguage
andadifferentwaytospecifyproblem-solvingcontrol.

). i

Abstraction Level

High-level
declarative model

Medium-level

procedural model

Low-level

declarative model

Observations

Low-level
procedures

Figure 1: Remote Agent's layered architecture

At the highest level is PS, which uses a high-level
declarative modeling _language (HSTS DD L) to define the
state machines and the temporal constraints needed to

create valid plans. PS uses depth-first, backtrack search as
the basic problem-solving engine. In order to produce plans
in reasonable times, developers can use a simple language

to specify choice selection heuristics. For the DS1 RA, we
were able to write heuristics that drastically reduced

backtracking, limiting it to shallow trees. This allowed PS'
response time to stay between ½ hour and 4 hours

depending on the size of the planning problem. This was
achieved on a 20 MHz CPU for V2 of the available CPU

time and within 32 MB of available memory.
The Executive (EXEC) occupies the second layer.

EXEC's function is to translate high-level actions in the

plan into a stream of timed, low-level commands to System
Software. EX2EC does so with two separate mechanisms.

First it interprets the plan one step at a time with a

specialized module called the plan runner. For each action
currently in execution, the plan runner checks whether all

logical and temporal termination conditions for the action
are satisfied. If so, it terminates the action, it propagates the
action termination time to the rest of the plan, and it starts
the next action in the plan. When executing an action,

EXEC runs a procedure associated with it in EXEC's
model. Each procedure is written in ESL, an extension of

LISP (Gat 1996). It specifies how to achieve the success
states associated with the action using low-level commands

to System Software. An ESL procedure operates at a level
of abstraction higher than that of low-level commands in
order to enhance reactivity. On DS 1, an EXEC procedure

needed to respond to any handled event within a worst-case
4-second bound.

EXEC relies on MIR to support low-level sensor

interpretation and commanding. MIR provides two main
functions. MI (Mode Identification) estimates state and
notifies EXEC when a state changes. MI uses a detailed

model of the system components (e.g., switches). Typically
MI needs to consider interactions between several

subsystems (e.g., sensors) in order to determine the state of

some device (e.g., whether a thruster is ON or OFF). MR
(Mode Recovery) uses the same model of MI and
determines the least costly path from the MI estimated

(faulty) system state and the one EXEC requires in order to
satisfy the plan. MR also guarantees that the recovery
actions do not pass through invalid states communicated by
EXEC. For DS l, the maximum response time for MR was
5 seconds while MI could generally generate a diagnosis
within a few hundred milliseconds

Using different problem solving modules with different

representation languages and different reasoning engines
had a direct advantage. In large part the modules

constituting RA were based on technology already
available. For DS1, it was therefore possible to concentrate

on the still very hard problem of weaving these modules
into a single, coherent agent. Also, one may argue that the

representation and problem solving capability of each
module could be tuned to maximize performance at that
level. However, this heterogeneous approach made it
difficult to validate all the models and procedures and to

insiire'that they did not conflict.

The structure of IDEA

• Afte/" an in depth analysis of RA's functionality, we believe
th_ it is possible to duplicate it within a new, unified agent
framework, where all layers have the same structure. In
this section we givean outline of the main components in

IDEA.

Tokens and Procedures

• In_DEA, the fundamental unit of execution is a token, a
time interval during which the agent executes a procedure.

A procedure has the following general form:
P(il in --+ ml mk--)ol ore; s)

Each ii, mi and oi represents respectively an input, mode
and output argument. It _s possible for any or all of n, k and
m to be zero. For example, if n=O, the procedure has no

inputarguments.A procedurehasalsoa statusvalues.
Normally, at any time during its execution, a procedure
returns a value for each oj. There are no constraints either
on the order or on the exact time at which output values are
returned. When the procedure returns a value for the status
s, however, the token is terminated and one or more tokens

may be started. To execute a procedure the value of all
input arguments i_ must be known. If so, P can be called
and the time of invocation of P is the token start time. The

procedure continues execution until one of two things
happen: 1) a status value is returned; or 2) the agent
decides to interrupt the token's execution (e.g., because the
token has timed-out i.e., the current time is equal to the
latest end time of the token). The time at which this

happens is the token end time. While inputs, outputs and
status play an active role in the execution of a token, the
mode arguments play only an indirect role. Their value is
not monitored at execution but can be arbitrarily modified

by a planning activiV at any time during the agent's

problem solving•

::Conti61iing
System •

=

Goal ; T ExecutionNetworks Feedback

I: c6_tr611ing '

SyStem J

J.t _,, ,_

r

Goal
Networks

Figure 2: Structure of an IDEA agent

Communication Wrapper and Virtual Machine

Figure 2 gives an overview of the basic components of

an IDEA agent. The agent communicates with other agents
(either controlling or controlled by the agent) using a
communication wrapper. The function of this wrapper is to
send messages that initiate the execution of procedure shy _ _

other agents or to receive goals that are treated by the agent
as tokens. The arguments and the start and end time of each
received token are treated as parameters used by the

internal problem solving of the IDEA agent to decide what
to do next. An IDEA agent can communicate with multiple

agents both controlling and controlled. Moreover two
agents could mutually control each other. Therefore, there
is no restriction on the communication topology of a multi-

agent system implemented with IDEA agents.
The format of the allowed communications is governed by
the central Model that describes which procedures can be

exchanged with which external agents. It also specifies

which procedure arguments are expected to be determined
before a goal is sent to another agent (input arguments) and
on which arguments the agent is expecting execution
feedback from some other agent executing the token

(output and status arguments). As we will see this model is
also central to the functioning of the virtual machine. To
communicate with other agents the relay relies on an

underlying inter-process communication mechanism that is

not part of IDEA proper. Our current implementation relies
on the [PC package from CMU (Simmons and James 2001)
and we are also exploring the use of real-time CORBA

(Real-Time CORBA 2002).

Plan Database and Model

The IDEA agent executes tokens only after they have

appeared in a plan maintained in a central database. This
can happen either because a controlling agent has
communicated new goals or because some internal

planning (reactive or deliberative) has generated
appropriate subgoals. Although our reference
implementation is based on the constraint-based EUROPA
planning technology (Jonsson 2000), the use of different

planning technologies is possible as long as they satisfy
IDEA's requirement. In particular, the database must be
partitioned into a series of parallel timelines, each

representing the evolution over time of a dynamic property
of a subsystem. To be considered for execution, a token
must lay on an appropriate timeline. Sequences of tokens
on a timeline will be executed sequentially and in parallel
with tokens on other timelines. From now on we will

continue discussing IDEA assuming the existence of a

sophisticated constraint representation and propagation in
the database, although this is not a strong requirement of

IDEA_
At any point in time, the Plan Database describes the

portion of the past that is remembered, the tokens currently
in execution, and the currently known future tokens,

including all the possible ways in which they can execute.
Each, token parameter (input, mode, output, status, and start

i.an_" end time) has an associated variable. All these
variables are connected by explicit constraints into a single

constraint network. For example, the start and end time
variables of each token are always related by an explicit
duration constraint. The network implicitly restricts the

possible value of each argument. The constraint database
provides constraint propagation services that impose
appropriate levels of consistency (e.g., arc consistency or
path consistency) and can restrict the range of variables to
appropriate sets of values (possibly a singleton). For
example, consider a simple casewith two timelines, one
representing the actions of a robot and the other
representing the state of the robot's on-board battery. The

plan may contain a robot action:

recharge ([10, 20] ") "-) ; nominal)
This takes as input the level of charge of the battery, has

no mode and output arguments, and is expected to return in
a nominal state. The [10, 20] range means that the actual
value of the input battery state of charge must be between
10 and 20 units for the procedure to be legally executed.

The exact input value could be obtained by executing a
token read_state_of_charge (--') ") soc; s) on the battery
state of charge timeline. Such a token could be present in

the plan and constrained to execute before the_reCharge
token. The communication of the state of charge between

the two procedures can be obtained by a co-designation
constraint between the output of read_state_of charge and

the input of recharge.
Tokens and constraints between them must respect the

requirements of the agent's central domain Model. For
example, the domain model could contain the constraint
that before recharging the battery, it is necessary to
read_state_of_charge from the battery. If this is the case,
then recharge wilt not be executable unless such model
constraint is satisfied in the plan at the time of executioo. 'I_

Procedures can be executed only if the value _of their

parameters is consistent with the plan database constraints.
The framework does not require that all database
constraints be fully consistent at all times. It is possible to
allow model constraints to be unsatisfied or for constraints

to be inconsistent. The only consistency requirement is,
local and pertains to all the tokens that are currently being
executed, about to be executed or that have already

completed execution. This situation is similar to classic
repair-based scheduling methods, where the scheduler can
relax some constraints in-the plan and attempt to satisfy
them later. Since inconsistencies can only involve future
tokens, the agent should have a reasonable belief that there
will be a way to fix the inconsistency before the future
tokens involved are executed. However the latter is not a

strong requirement in this framework since usually it is

possible to degrade performance by rejecting lower prior!ty

goals.

Generating and Running Plans

The core execution component of the agent is the Plan L

Runner, an extension and generalization of the "P,A plan
runner. The plan runner is very simple so that it can be

extremely efficient and easy to validate.
The Plan Runner is activated asynchronously when either a

message has been rec_'iVed from another agent(e.g., a new
goal is being communicated or the value of an output
parameter becomes available for execution feedback) or an
internal timer has gone off (e.g., the maximum allowable
duration of a token has been achieved). When the Plan
Runner wakes up, it makes the messages available for
inclusion in the Plan Database and then immediately calls a
Reactive Planner. The Reactive Planner has the

responsibility to return with a plan that is locally_
executable. The planner is essentially in charge of

guaranteeing two conditions: (1) consistency of token
parameters with the plan constraints; and (2) support for
the token according to the domain model.

Checking plan constraints is obtained as part of the

constraint propagation within the Plan Database. This
automatically communicates the effect of a received output

or status value to the unexecuted part of the plan. Similarly,
the actual end time for a token is propagated to the rest of

the plan.
Checking model support for a token requires

guaranteeing that a new token must start when the token
immediately preceding on the timeline ends. Before starting
a new token and invoking the new procedure, the Reactive
Planner checks whether the token is indeed supported by
the model in the plan. This means that there must be a set
of constraints in the plan that corresponds to a set of

requirements necessary for the token execution according
to the model. If this is the case, the Reactive Planner may
further constrain the procedure's arguments so that it can

be called during the current execution cycle. This may

require constraining the input variables so that all of the
procedure's input arguments are bound to a single value. If
so, the Plan Runner starts execution of the token procedure
with the input variable found in the plan.

It may be that one of the two conditions above is not
satisfied. This can happen, for example, if the output
returned by a procedure does not match the set of possible
return values in the plan, or if some model constraints are

missing in the plan. For example, the plan runner may be
on the verge of executing a recharge token but the plan

may not have an explicit constraint connecting recharge
with a specific past read_state_of charge token. In this
case the Reactive Planner has the responsibility to fix the

plan so that execution can continue. This may involve
resolving execution exceptions (such as the missing
constraint between recharge and read_state_of_charge
described before) or refining future token parameters on
the basis of the information received during the execution
of current tokens (e.g., decide to execute a token as early as

possible because of the value of some received output

argument).
The total cycle time of the Plan Runner and Reactive
Planner is bound by a fixed amount of time, the execution

latency (Muscettola et al. 1998). The Plan Runner is
expected to wake up, process all received messages, call
the Reactive Planner, receive termination notification from

the Reactive Planner, send appropriate messages to
external agents and suspend itself within the execution
latency. If this does not happen, then the agent will have
irre_0verably failed and some low-level fault protection
behavior will have to take over control. This hard

requirement ensures that the agent will operate within a
well-defined real time guarantee, a condition that is usually
overlooked in intelligent agents research but is crucial to

_the-_design and implementation of a viable embedded

control system. ,:

Reactive and Deliberative Planning

IDEA allows the use of several planning modules in the

same agent, each potentially using a different internal logic
.and,working with a different scope. All of these modules
satisfy the same input/output behavior: given an initial plan
database, a planner generates a new plan database that
satisfies some given plan quality criterion (Jonsson et al.
2000). For example, the plan quality criterion may require

that all tokens present in the initial plan database be present
in the final plan and be fully causally supported. This may

require removing inconsistencies present in the initial state,

andgeneratingnewtokensandconstraintsaccordingtothe
requirementsof the domainmodel.A plannercanbe
invokedin a reactiveorproactivefashion.Thefirstcase
occurswithintheexecutioncycleof thePlanRunner,the
secondwhentheagentanticipatespotentialproblemsinthe
futureandaskstheplannerto intervene.Deliberative
planningcanalsobeinvokedtoproduceahighqualityplan
forafuturehorizon(e.g.,anoptimizedobservationplanfor
thenextday),anactivitythatcannotbeadequatelycarried
outwithinthereactiveexecutionlatency.Wewilldiscuss
laterhowthiscanbeaccomplished.Herewewanttopoint
out thatthereis no limitationonhowsmalla planning
problemcouldbe, providedthat the gene_:atedplan
resolvesanylocalplanflawthatwaspresentin theplan
beforetheinvocationof theplanner.Forexample,consider
ourexampleof anunsupportedrechargetoken.Theplan
databasemaycontaina previouslyexecutedtokenthat
invokedreadstate_of_charge. On the basis of the domain
model it may be determined that the result of that

procedure invocation is still viable as an input to recharge.
Therefore, the planner may simply create the teml?oral
constraint and the parameter co-designation constraint from
read_state_of_charge to recharge. Subsequent constraint

propagation will assign a unique value for the input
parameter of recharge. The plan quality criterion ,may
allow the planner to stop and signal the resolution of the
flaw. The Plan Runner can now resume execution and start

execution of recharge.

Implications of the New FrameWork

Centrality of the model

The proposed framework strongly relies on a single, core
domain model semantic. Unlike RA where models were

internal to each layer and could have very different
semantics, the common IDEA "modeling assembler" forces

all agents to share the same semantics. At present, tile
modeling language used is the DDL language used in the
PS model of the DS 1 Remote Agent (Jonsson et al. 2000).

Layering of the agent's functionality depends on _ -.
partitioning the overall model into groups of timelines of
different abstraction levels, each being the responsibility of

a separate IDEA agent. For example, RA EXEC's action
decomposition procedt_es are implemented by simply
specifying an appropriate"set of timelines and constraints in
the model and by relying on fast, reactive planning for next
action selection (see below). Partitioning a model among

several agents is important to appropriately balance the
responsiveness of each control agent with its ability of
taking into account more complex constraints and longer
horizons when deciding the next step. For example, a
decision on what scientific observation to execute next at

the highest level of abstraction may require looking ahead
several steps in the current plan. This means that the
reactive behavior at the higher level may require a

relatively large execution latency (e.g., 10 seconds). At the
lowest level, however, devices may have to be controlled
with a much shorter latency (e.g., responding to a fault
within tens of milliseconds). This may limit the amount of
interactions and look-ahead that an agent will be allowed to

take into account, trading off responsiveness for myopia.
The coordination between different agents at different
levels of abstraction allows us in principle to achieve the

best compromise and design of the overall control system.
Defining a robust methodology of the design of such a

multi-agent, multi-latency control system is a current area
of research.

In each agent, the plan database always checks

consistency with the domain model. For example, a planner
can lay a procedure invocation on a timeline only if the
procedure type is associated with the timeline in the model.
Also, the plan runner refuses to execute a token that is
locally inconsistent or with partially supported model

requirements.
The model can be acquired incrementally (i.e., one

requirement at a time) during system design and
engineering and at any time it contains all of the known
constraints and desired behaviors in nominal and fault-

protection conditions. Having the model as a single locus
for this information and making the model directly usable

by automatic reasoning systems (e.g., the planners) makes
this knowledge directly usable at execution. This is in
contrast to traditional software practices for complex

, systems' (e.g., spacecraft flight software), where there is
always a significant gap between specifications (in natural
language or other semi-formal format) and implementations

(a low-level language such as C or C++).

Reactivity

Even within a single IDEA agent, one important aspect is
its reactivity, i.e., the time needed by the agent to decide
what to do next in a way consistent with its predictions and

with its goal. As we mentioned before, short response times

depend on limiting the scope of the planning problem.
Selecting the next action may require significant effort,
requiring the intervention of a "deliberative planner" to
bridge the gap between the current state and the goals.
However, in general the amount of planning effort depends
on the required level of plan quality (e.g., your next action

ml_g[guarantee achievement of all future goals with
minimal resource usage), on how much information is

available before planning, and on the uncertainty on the
values returned by procedure executions. In several cases
the model may force the choice of the next action (e.g., turn
on the heater if the temperature is too low) but the
information needed to make the decision may not be
available ahead of time (e.g., while the agent is keeping the

:temperature in range, it does not know future temperat_e
a changes and, therefore, whether it will need to turn on me

heater or the cooler next). 'In this case planning may just
need to determine the next token and, therefore, may need

very little time. Later we will discuss how more expensive

planning is integrated in theagent's behavioK

• Time-bounded response

One of the critical parameters in this agent framework is
the execution latency, i.e., the time needed by the plan
runner to terminate execution of a token and start execution

.... , of the next on a timeline. At first this would appear to

severely restrict the amount of intelligence that an agent
can bring to bear when reacting to faults. If we look closer,

however,thisrequirementsimplystatesthata subsystem
(timeline)canremainwithoutcommandingforamaximum
amountof timeequalto thelatency.Thisrequirementis
equivalentto establishingaminimumsamplingratein a
traditionalcontrolsystem.Theagentcanreactintelligently
by relyingon a numberof pre-compiledalternative
solutions(scripts).Wheninvoked,the plannercould
quicklyselectascriptbymatchingitsplandatabasewith
thescriptapplicabilityconditions.Then,theplannercould
downloadthefirst tokenin thescriptandimmediately
signaltheplanflawresolutionsothattheplanrunnercan
resume.Subsequently,the plannercandownloadthe
remainingtokensin thescript.Thisscriptinterpretation
(togetherwithlocalreplanningtoreacttonewsensordata)
essentiallydescribesthe functionalityof the action
executioncapabilitiesoftheRAEXECmodule.

In somesituationstheremaynotbeaplanner(scripted
ornot)thatcanrespondwithinthelatency.In thiscasethe
systemwill needtoprovidea"standbyprocedure",i.e.,a
procedureor combinationof proceduresthatmaintainsa
safestatewhiletheplanneraddressestheoriginal,plan
flaw.Oncetheplannersolvestheproblem,thesystemcan
exitthestandbystateandcontinuenominalexecution.Note
thatthestandbyprocedure,theplannerbehaviorandti3e
"standbyexit"procedureareall describedin thedomMn
modelandmustbeloadedintotheplandatabaselikeany
otherprocedure.Inotherwords,standbyisaconceptthatis
explicitlymodeledlikeanyothersystemrequirement.The
plannerwill decideto gointostandbywithinthelatency
time.Thiswillgainenoughtimetotakethenextstepsina
deliberateway.

Modelingthe controIsystem

Although a planner may need more time than the latency
to modify the plan database, no special architectural

support is given for this deliberative activity. For example,
the agent may need to call the planner before -a predicted

plan flaw will actually appear in execution. This carl-be
obtained by modeling the planner like any other subsystem,
i.e., by specifying a timeline that can take tokens whose
execution explicitly invokes the planner. The model may
also include constraint requirements for "planned" planner _-_,
invocations (Pellet al. 1997). For example the model may :

say how to evaluate the time needed by the planner to
produce a solution, and'it may require that planning does
not occur in parallel .with: other CPU intensive activities.
Proactive planner im)Scations will therefore ,appear in a

plan. In summary, our framework does not "hard-wire" the
relation between reactivity and deliberation but allows

explicit programming of the interaction policy with a much
wider and adjustable range of possibilitieS.

Final Remarks

It is commonly accepted that reactive and deliberative
behaviors in an agent require very different representations
and inference mechanisms. The framework discussed in

this paper aims at providing both capabilities within a
single, simple representational, planning and execution
framework. This unification is based on the observation

that "planning" can be arbitrarily simple for an appropriate

definition of a planning problem. This can include the
selection of the next action to execute from a script, a

typical operation performed by procedural executives.
IDEA aims at supporting all functionalities of the Remote

Agent architecture. We have generated an implementation
of IDEA using the EUROPA planning technology. We

have re-implemented the high-level control layer of the
Remote Agent and are currently applying IDEA to other
applications such as the control of an interferometry testbed
at the Jet Propulsion Laboratory and an analysis of the low-

level fault protection system for the Deep Space 1 and

Deep Impact spacecrafts from JPL.

References

D. E. Bernard, G. A. Dorais, C. Fry, E. B. Gamble Jr. B.
Kanefsky, J. Kurien, W. Millar, N. Muscettola, P. P.
Nayak, B. Pell, K. Rajan, N. Rouquette, B. Sn'tith, B.
C. Williams, "Design of the remote agent experiment

for spacecraft autonomy." In Proc. of the IEEE

Aerospace Conference, March 1998.
R. P. Bdnass0, R. J. Firby, E. Gat, D. Kortenkamp, D.

Miller, and M. Slack, "Experiences with an
A_rchitecture for Intelligent, Reactive Agents", J. of

.Experimental and Theoretical AI, January, 1997.
K. W. Currie, A. Tate. "O-Plan: the Open Planning

Architecture," AI Journal, 52(1), pp. 49-86, 1991.
Erann Gat, "ESL: A language for supporting robust plan

execution in embedded autonomous agents,"

Proceedings of the AAAI Fall Symposium on Plan
Execution, AAAI Press, 1996.

A. Jonsson, and J. Frank, "A Framework for Dynamic
Constraint Reasoning using Procedural Constraints, in

Workshop on Constraints in Control, part of the 5th
International Conference on Principles and Practices of
Constraint Programming, (CP99), 1999.

A.K. Jonsson, P, Morris, N. Muscettola, K. Rajan, B.
Smith "Planning in interplanetary space: theory and

:. ,practice", in Proceedings of the Fifth International
Conference on Artificial Intelligence Planning Systems
(AIPS '00), Breckenridge, Colorado, 2000.

Phil Kim, Brian Williams, Mark Abramson. Executing
' Reactive Model-based Programs Through Graph-based

Temporal Planning, Proc. of HCA12001, Seattle, WA,

2001.
N. Muscettola, P. Morris, B. Pell, B. Smith, "Issues in

temporal reasoning for autonomous control systems."
/.In Proc. of the Second Intl. Conf. on Auton. Agents

_' " (AGENTS'98), Minneapolis, IVIN, 1998.
p. P. Nayak, D. E. Bernard, G. Dorais, E. B. Gamble Jr., B.

Kanefsky, J. Kurien, W. Millar, N. Muscettola, K.
Rajan, N. Rouquette, B. D- Smith, W. Taylor, Y. W.
Tung, "Validating the DS 1 Remote Agent

Experiment", in Proc. of the Fifth Intl. Symposium on
'"Artificial Intelligence, Robotics and Automation n

Space (iSAIRAS'99), pP. 349, 356, Nordwijk, The
Netherlands, June 1999.

Barney Pell, Erann Gat, Ron Keesing, Nicola Muscettola,
and Ben Smith. !,Robust Periodic Planning and
Execution for Autonomous Spacecraft." In

Proceedings of IJCAI, 1997.

BarneyPell,Ed Gamble,ErannGat,RonKeesing,Jim
Kurien,Bill Millar,P. PandurangNayak,Christian
Plaunt, and Brian Williams. "A Hybrid
Procedural/DeductiveExecutiveFor Autonomous
Spacecraft."In AutonomousAgentsandMulti-Agent
Systems,2:1:7-221999.

Real-timeCORBA with TAO (The ACE ORB),
http://www.c s.v,_astl.edu/-schmidt/TAO-intro.html

Reid Simmons, David Apfelbaum. "A Task Description

Language for Robot Control", in Proc. Conference on
Intelligent Robotics and Systems, 1998.

Reid Simmons, Dale James, Inter-Process Communication

v3.4, Carnegie Mellon University, February 2001,
available at http://www-

2.cs.cmu.edu/afs/cs/project/TCA/ftp/ic_'_s'_z
D. E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P.

Wesley, "Planning and Reacting in Uncertain and

Dynamic Environments", in Journal of Experimental
and Theoretical Artificial Intelligence, 6:197-227,
1994. See also:

http://www.ai.sri.com/people/wilkins/papers.html
B. C. Williams, P. P. Nayak. "A Model-Based Approach to

Reactive Self-Configuring Systems", in Proc. of the
Thirteen Nat. Conf. on Artificial Intelligence (AAAI

'96), Portland, Oregon, 1996.

